NLPExplorer
Papers
Venues
Authors
Authors Timeline
Field of Study
URLs
ACL N-gram Stats
TweeNLP
API
Team
Characters or Morphemes: How to Represent Words?
Ahmet Üstün
|
Murathan Kurfalı
|
Burcu Can
|
Paper Details:
Month: July
Year: 2018
Location: Melbourne, Australia
Venue:
ACL |
WS |
SIG: SIGREP
Citations
URL
No Citations Yet
http://nlp.cs.hacettepe.edu.tr/projects/morph2vec/
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
http://nlp.cs.hacettepe.edu.tr/projects/morph2vec/
http://nlp.cs.hacettepe.edu.tr/projects/morph2vec/
http://nlp.cs.hacettepe.edu.tr/projects/morph2vec/
Field Of Study
Linguistic Trends
Distributional Semantics
Embeddings
Morphology
Task
Tagging
Semantic Similarity
Information Retrieval
Machine Translation
Approach
Deep Learning
Representation Learning
Unsupervised Learning
Language
English
Similar Papers
Neural Morphological Tagging of Lemma Sequences for Machine Translation
Costanza Conforti
|
Matthias Huck
|
Alexander Fraser
|
Enriching Word Vectors with Subword Information
Piotr Bojanowski
|
Edouard Grave
|
Armand Joulin
|
Tomas Mikolov
|
Creating a Large Multi-Layered Representational Repository of Linguistic Code Switched Arabic Data
Mona Diab
|
Mahmoud Ghoneim
|
Abdelati Hawwari
|
Fahad AlGhamdi
|
Nada AlMarwani
|
Mohamed Al-Badrashiny
|
Semi-supervised Structured Prediction with Neural CRF Autoencoder
Xiao Zhang
|
Yong Jiang
|
Hao Peng
|
Kewei Tu
|
Dan Goldwasser
|
A Survey of Arabic Named Entity Recognition and Classification
Khaled Shaalan
|