NLPExplorer
Papers
Venues
Authors
Authors Timeline
Field of Study
URLs
ACL N-gram Stats
TweeNLP
API
Team
What Makes Word-level Neural Machine Translation Hard: A Case Study on English-German Translation
Fabian Hirschmann
|
Jinseok Nam
|
Johannes Fürnkranz
|
Paper Details:
Month: December
Year: 2016
Location: Osaka, Japan
Venue:
COLING |
Citations
URL
No Citations Yet
http://creativecommons.org/licenses/by/4.0/
http://stanfordnlp.github.io/CoreNLP
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/
https://github.com/shuyo/language-detection
https://github.com/mila-udem/blocks
Field Of Study
Linguistic Trends
Syntax
Task
Tagging
Machine Translation
Language
English
French
Dataset
Scientific Literature
News
Similar Papers
Enriching Word Vectors with Subword Information
Piotr Bojanowski
|
Edouard Grave
|
Armand Joulin
|
Tomas Mikolov
|
Natural Language Processing for Dialectical Arabic: A Survey
Abdulhadi Shoufan
|
Sumaya Alameri
|
Creating a Large Multi-Layered Representational Repository of Linguistic Code Switched Arabic Data
Mona Diab
|
Mahmoud Ghoneim
|
Abdelati Hawwari
|
Fahad AlGhamdi
|
Nada AlMarwani
|
Mohamed Al-Badrashiny
|
Semi-supervised Structured Prediction with Neural CRF Autoencoder
Xiao Zhang
|
Yong Jiang
|
Hao Peng
|
Kewei Tu
|
Dan Goldwasser
|
A Survey of Arabic Named Entity Recognition and Classification
Khaled Shaalan
|